Short Reports 3237

18-Me), 0.93 (3H, s, 20-Me), CD (MeOH; c 1.000 mg/ml, d 2 mm, room temp.): 190 (0), 194 (-4.8), 195 (-2.9), 196 (-3.2), 210 (0), 242 (+2.0), 304 (+0.7).

Monacetate of rosthornin B (5). A soln of 2 (20 mg) in a mixture of pyridine (0.5 ml) and Ac₂O (0.5 ml) was allowed to stand at room temp. for 3 hr, then MeOH (4 ml) was added to the soln which was evapd to give a residue. This was purified by CC on silica gel to give 5 (13 mg). $C_{26}H_{36}O_8$. ν_{max}^{KBr} 3620, 1735, 1650, 1235, 1120, 1100, 1070, 1036, 980, 950 cm⁻¹; MS m/z: 476 (M)⁺, 458, 448, 430, 416, 398, 380, 370, 356, 338, 328, 310, 295, 283, 265, 250, 149, 109, 43 (base peak). δ : 6.21 and 5.52 (each 1H, br s, 17- H_2), 5.40 (br d, 5 Hz, 11 α -H), 4.36 (dd, 4, 12 Hz, 7 β -H), 4.27 and 3.97 (each 1H, d, 11 Hz, 19-H₂), 2.14, 2.02 and 1.93 (each 3H, s, 3 \times OAc), 1.48 (*br s*, 9 β -H), 1.09 (3H, *s*, 18-Me), 0.96 (3H, *s*, 20-Me). Diacetate of rosthornin B (6). A soln of 2 (20 mg) in Ac₂O-pyridine was sitrred at 70° for 72 hr, then treated in the same way as for 5 to give 6 (11 mg). $C_{28}H_{38}O_9$, v_{max}^{KBr} 1735, 1645, 1235, 1090, 1035, 975, 946, 930 cm⁻¹; MS m/z: 434 [M-2] ×ketene]+, 416, 398, 374, 356, 328, 314, 296, 283, 253, 109, 43 (base peak). δ : 6.22 and 5.76 (each 1H, br s, 17-H₂), 5.47 (dd, 4, 12 Hz, 7β -H), 5.40 (*br d*, 5 Hz, 11 α -H), 4.25 and 3.93 (each 1H, *d*,

11 Hz, 19-H₂), 2.13, 2.04, 1.94 and 1.88 (each 3H, s, $4 \times$ OAc), 1.48 (br s, 9β -H), 1.04 (3H, s, 18-Me), 0.95 (3H, s, 20-Me).

REFERENCES

- Wu Cheng-Yih and Li Hsi-Wen (1977) Flora Reipublicae Popularis Sinicae Vol. 66, p. 518. Beijing Academic Press, Beijing.
- Xu Yunlong, Sun Xichang, Sun Handong, Lin Zhongwen and Wang Dezu (1981) Acta Bot. Yunnan. 3, 283.
- 3. Fujita, E., Nagao, Y. and Node, M. (1976) Heterocycles 793.
- Gonzalez, A. G., Fraga, B. M., Hernandez, M. G. and Hanson, J. R. (1981) Phytochemistry 20, 846.
- 5. Matsuo, A., Uto, S., Kodama, T., Nakayama, M. and Shuichi Hayashi. (1978) Nippon Kagaku Kaishi 84, 1680.
- Kohda, H., Kasai, R., Yamasaki, K., Murakami, K. and Tanaka, O. (1976) Phytochemistry 15, 981.
- Fujita, T., Takeda, Y. and Shingu, T. (1981) Heterocycles 16, 227.
- Nomoto, K., Ruedi, P. and Eugster, C. H. (1976) Helv. Chim. Acta. 59, 772.

Phytochemistry, Vol. 28, No. 11, pp. 3237-3239, 1989. Printed in Great Britain.

0031-9422/89 \$3.00+0.00 © 1989 Pergamon Press plc

DIKETOSTEROID FROM MARINE RED ALGA HYPNEA MUSCIFORMIS

Moses Babu J., Girish K. Trivedi and Hari H. Mathur*

Department of Chemistry, Indian Institute of Technology, Bombay 400 076, India; *Department of Marine Science, University Campus, Bhavnagar 364 002, India

(Received 28 November 1988)

Key Word Index—Hypnea musciformis; Rhodophyta; red alga; diketo steroid; 5β -cholest-3-ene-7,11-dione.

Abstract—The isolation of a diketo steroid is reported from the hexane extract of the marine red alga Hypnea musciformis. The compound has been characterized as 5β -cholest-3-ene-7,11-dione based on 2D-NMR analysis.

INTRODUCTION

The major sterols of the red algae are C_{27} compounds. Cholesterol predominates, but in several species demosterol has been detected [1–10]. However, 22-dehydrocholesterol is reported to be present in relatively large amounts only in *Hypnea japonica* [11] and *Hypnea musciformis* [8]. Red algae also contain traces of C_{26} , C_{28} and C_{29} sterols [6, 7, 12]. Isolation of a 3-keto steroid [13, 14] and a 3, 6-diketo steriod [15] in some species is also documented. We now report, for the first time, the isolation of 7,11-diketo steroid from *Hypnea musciformis*.

RESULTS AND DISCUSSION

The hexane extract of air-dried seaweed was chromatographed over silica gel by gradient elution (ethyl acetate-hexane). A crystalline compound (1) was obtained by elution with 10% ethyl acetate in hexane.

The ¹H NMR spectrum and mass spectral fragmentation of compound 1 revealed that it was a steroid with a C_8H_{17} side chain. It gave a pink colour with the Komarowsky reagent [16], indicating it to be a ketosteroid. The ¹H NMR spectrum displayed signals at $\delta 0.68$ (3H, H₃-18) and $\delta 0.93$ (3H, H₃-19) for the two tertiary methyls, a signal at 0.98 (3H, d, J = 6.5 Hz, H₃-21) and a signal for six protons at 0.84 which was assigned to the isopropyl group situated in the side chain. These signals are comparable to those in the spectrum of cholesterol

 $(\delta 0.68, 3H, H_3-18, 1.00, 3H, H_3-19, 0.91, 3H, d, J = 6.3 Hz, H_3-21 and 0.85, isopropyl).$

The ¹H NMR spectrum of 1 also showed two multiplets at δ 5.20 (dd), 5.31 (dt) and the ¹³C NMR spectrum gave two signals at δ 137.58 (d) and 126.56 (d) indicating a disubstituted double bond. The multiplicity of the olefinic proton signals showed the presence of the -CH₂-CH = CH-CH < system which indicated the presence of a double bond between C-3, C-4 in ring A.

A sharp intense peak at $1705 \, \mathrm{cm^{-1}}$ in the IR spectrum and $^{13}\mathrm{C}$ NMR signals at $\delta 211.09$ and 208.95 indicated the presence of two six-membered cyclic keto groups. The $\lambda_{\mathrm{max}}^{\mathrm{CHCl}_3}$ at 213 nm showed that both keto groups and the double bond are not in conjugation. Thus it could not be a 2-keto compound. If compound 1 was to be 1-keto or 12-keto, the $^{13}\mathrm{C}$ NMR signals should have appeared

Table 1. NMR spectral data of compound 1

Position		^{1}H	COSY	DEPT	¹³ C	HeteroCOSY
1.	H _{eq}	2.37	(2.01, 1H _{ax}), (2.00, 2H _{ax})	CH ₂	46.52	(2.37, 1H _{eq})
			(1.86, 2H _{eq})			$(2.01, 1H_{ax})$
	H_{ax}	2.01	$(2.37, 1H_{eq}), (2.00, 2H_{ax})$			
			$(1.86, 2H_{eq})$			
2	H_{eq}	1.86	$(2.00, 2H_{ax}), (2.37, 1H_{eq})$	CH_2	30.02	$(1.86, 2H_{eq})$
	•		$(2.01, 1H_{ax}), (5.20, 3H)$			$(2.00, 2H_{ax})$
	H_{ax}	2.00	$(1.86, 2H_{eq}), (2.37, 1H_{eq})$			
			$(2.01, 1H_{ax})$			
3	Н	5.20	(5.31, 4H), (1.86, 2H _{eq})	CH	126.56	(5.20, 3H)
4	H	5.31	(5.20, 3H), (2.08, 5H)	CH	137.58	(5.31, 4H)
5	Н	2.08	(5.31, 3H), (2.31, 6H _{ax})	CH	30.02	(2.08, 5H)
			$(2.40, 6H_{eq})$			
6	H_{ax}	2.31	$(2.40, 6H_{eq}), (2.08, 5H)$	CH_2	37.30	$(2.31, 6H_{ax})$
	H_{eq}	2.40	(2.31, 6H _{ax}), (2.08, 5H)			$(2.40, 6H_{eq})$
7					211.10	
8	Н	1.27	(1.15, 14H)	CH	56.67	(1.27, 8H)
9	Н	2.60	(harman	СН	57.44	(2.60, 9H)
10					41.18	
11					208.96	
12	H_{ax}	2.29	$(2.57, 12H_{eq})$	CH_2	36.93	$(2.29, 12H_{ax})$
	H_{eq}	2.57	$(2.29, 12H_{ax})$			$(2.57, 12H_{eq})$
13					42.84	
14	Н	1.15	(1.27, 8H)	CH	55.80	(1.15, 14H)
15	H_{ax}	1.09	$(1.52, 15H_{eq})$	CH_2	23.44	$(1.09, 15H_{ax})$
	H_{eq}	1.52	$(1.09, 15H_{ax})$			$(1.52, 15H_{eq})$
16	H_{eq}	1.45	$(1.67, 16H_{ax})$	CH_2	21.61	$(1.45, 16H_{ax})$
	H_{ax}	1.67	$(1.45, 16H_{eq})$			$(1.67, 16H_{ax})$
17	Н	1.45	$(1.67, 16H_{ax}), (2.04, 20 H)$	CH	53.43	(1.45, 17H)
18	3 H	0.68		CH_3	12.15	(0.68, 18Me)
19	3 H	0.93		CH_3	12.44	(0.93, 19Me)
20	Н	2.04	(0.83, 21Me), (1.45, 17H)	СН	39.97	(2.04, 20 H)
			$(2.05, 22H_a), (1.18 22H_b)$			
21	3H	0.98	(2.04, 20 H)	CH ₃	20.74	(0.98, 21Me)
22	H_a	2.05	$(1.18, 22H_b), (2.04, 20 H)$	CH_2	39.22	$(2.05, 22H_b)$
23	Нь	1.18	(2.05, 22H _a), (2.04, 20 H)			$(1.18, 22H_a)$
	H _a	1.26	$(1.87, 23H_b), (1.18, 22H_b)$	CH_2	28.38	$(1.26, 23H_b)$
	H _b	1.87	$(1.26, 23H_a)$			$(1.87, 23H_a)$
24	H _a	1.57	(1.56, 25H), (1.84, 24H _b)	CH_2	30.02	$(1.57, 24H_a)$
	H _b	1.84	$(1.57, 24H_a)$			$(1.84, 24H_a)$
25	Н	1.56	(0.84, 26, 27 M e)	CH	28.38	(1.56, 25H)
26		0.04				
27	6 H	0.84	(1.56, 25H)	2Me	22.24	(0.84, 26, 27N

Short Reports 3239

above δ 212. In the $^{1}H^{-1}H$ COSY spectrum the proton on C-5 showed cross peaks with that of C-6 indicating the absence of a 6-keto compound. Thus the two keto groups of 1 are located at the C-7 and C-11 positions.

The high resolution mass spectrum exhibited a molecular ion peak at m/z 398.3215 [M]⁺ (61.8%) and other fragment ions at m/z 313 [M-C₆H₁₃]⁺ (68.9%), 285 [M-C₈H₁₇]⁺ (36%), 299 [383-C₆H₁₂]⁺ (33.8%).

The 13 C NMR assignments of 1 (Table 1) were determined with the help of 13 C NMR coupled, decoupled, DEPT (Distortionless Enhancement of Polarisation Transfer) spectra and also with HeteroCOSY (13 C $^{-1}$ H) experiments. The DEPT experiment with a flip angle of 135° revealed the presence of seven CH peaks (resonating at δ 57.4, 56.6, 55.8, 53.4, 39.9, 30.0 and 28.38) and three Me peaks (resonating at δ 22.2 and 12.2 for two Me each and δ 20.7 for one Me) which gave signals in the positive direction. The eight peaks [resonating at δ 46.5, 39.2, 37.3, 36.9, 30.02, 28.4, 23.4, 21.61, (30.02 corresponded for two CH₂ groups)] in the negative direction indicated the presence of nine CH₂ groups.

Proton connectivities were further deduced from the $^{1}\text{H}^{-1}\text{H}$ COSY spectrum (Table 1). H-3 and H-4 appeared as multiplets at $\delta 5.31$ and 5.20, respectively, and were coupled. H-3 ($\delta 5.31$) further showed cross peaks with H-2 ($\delta 1.86$) which again showed cross peaks with H-1 ($\delta 2.01$, 2.37). H-4 ($\delta 5.20$) gave connectivities with H-5 ($\delta 2.08$) which further showed cross peaks with H-6 ($\delta 2.40$, $\delta 2.31$).

The NOSEY spectrum further showed the through space connectivity between H-5 (δ 2.08) and H₃-18 (δ 0.68) which confirms the stereochemistry at H-5. The Hetero-COSY spectrum showed all the ¹³C-¹H cross peaks (Table 1).

EXPERIMENTAL

The alga Hypnea musciformis was collected from the west coast of India (Lat. 22°28'N, Long. 69°05'E) during low tides in November 1986. The washed, air-dried, and pulverised alga (5 g) was extracted with hexane (3 × 5 l) at room temp. with the help of a mechanical stirrer. The solvent was removed in a rotavapour connected to aspirator, to yield a dark green extract (12 g). The concentrated hexane extract was chromatographed over silica gel and compound 1 was eluted with hexane–EtOAc (9:1) Compound 1 [α] $_0^{20}$ = -20.5° (CHCl $_3$, c 5.03), UV $\lambda_{\rm max}^{\rm KBr}$ nm: 213 IR $\lambda_{\rm max}^{\rm KBr}$ cm $^{-1}$: 2950, 2910, 1705, 1460, 1425, 1385, 1375, 1360, 1345, 1325, 1300, 1280, 1265, 1255, 1240, 1165, 1135, 1085, 1070, 1045, 1015, 990, 970.

Chemical shifts are reported relative to TMS. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) were measured in CDCl₃. EIMS were obtained at 70 eV.

The DEPT. experiments were performed using polarization transfer pulses of 45 and 135°, respectively, to obtain in the first case all -CH, -CH₂, -Me groups and in the other case positive signals for -CH, and -Me and negative ones for -CH₂ groups. All 2-D NMR experiments (COSY, NOESY & Hetero-COSY) were performed on a Bruker 500 MHz FT-NMR spectrometer. The mixing time for the NOESY experiment was 800 msec.

Acknowledgements—Financial assistance received from the Department of Ocean Development, Government of India, New Delhi in the form of a sponsored project is gratefully acknowledged. We are thankful for the 500 MHz FT-NMR National facility provided at the Tata Institute of Fundamental Research, Bombay 400 005.

REFERENCES

- 1. Tsuda, K., Akagi, S. and Kibhida, Y. (1957) Science 126, 927.
- Tsuda, K., Akagi, S. and Kibhida, Y. (1958) Pharm. Bull. (Tokyo) 6, 101.
- 3. Tsuda K., Akagi, S., Kibhida, Y., Hayatsu, R. and Sakai, K., (1958) Pharm. Bull. (Tokyo) 6, 724.
- 4. Saito, A. and Idler, D. R. (1966) Can. J. Biochem. 44, 1195.
- Gibbons, G. F., Goad, L. J. and Goodwin, T. W. (1967) Phytochemistry 6, 677.
- Alcaide, A., Devys, M. and Barbier, M. (1968) Phytochemistry 7, 329.
- Idler, D. R., Saito, A. and Wiseman, P. (1968) Steroids 11, 467.
- Meunier, H., Zelenski, S. and Worthen, L. (1970) Food Drugs Sea, Proc. Conf. Drugs, Sea, 2nd (1969) (Youngken, H. W., ed.) pp. 319-325, Mar. Technol. Soc., Washington D.
- 9. Patterson, G. W. (1971) Lipids 6, 120.
- Henriquez, P., Trucco, R., Silva, M and Sammes, P. G. (1972) *Phytochemistry* 11, 1171.
- Tsuda, K., Sakai, K., Tanabe, K., and Kishida, Y. (1960) J. Am. Chem. Soc. 82, 1442.
- 12. Ferezou, J. P., Devys, M., Allais, J. P. and Barbier, M. (1974) Phytochemistry 13, 593.
- Kanazawa A. and Yoshioka, M. (1971) Bull. Jap Soc. Fish. 37, 397.
- Kanazawa A. and Yoshioka, M. (1972) in Proceedings of the 7th International Seaweed Symposium (Nasizawa, K., ed.) Japan, p. 502.
- Wahidulla, S., D'Souza, L. and Patel, J. (1987) Phytochemistry 26, 2864.
- 16. Stevens, P. J. (1964) J. Chromatog. 14, 269.